Multiple studies identify potential new ways to beat disease that affects millions.

Mosquitoes are firmly in the crosshairs of scientists this week, with a tranche of articles announcing major advances in the battle against deadly diseases spread by the critters, including malaria, Dengue fever and Zika.

Despite concerted efforts to contain it, including the 2015 Nobel prize-winning research that developed the frontline drug Artemisinin, malaria still takes an appalling toll, mainly in sub-Saharan Africa. The World Health Organisation estimates there were 212 million cases and 439,000 deaths from malaria in 2015, with children under five accounting for 306,000 fatalities.

But there is also worrying news closer to home. Reports this year have detailed a multi-drug resistant strain of “super malaria” in South East Asia, specifically, the Greater Mekong region of southern Vietnam.

Hence the timeliness of two pieces of research, published in the journal Science this week, which identify and exploit key enzymes in the malaria parasite’s life cycle, potentially opening a door to new drug development.

The malaria parasite, plasmodium, is introduced into humans bitten by infected mosquitoes. It multiplies in the liver before being released back into the blood, where it enters, is extruded from, then re-enters red blood cells, key stages in the parasite’s life cycle. Symptoms of the disease range from minor fevers and chills to death from cerebral malaria and organ failure.

A team led by Daniel Goldberg, of the Washington University School of Medicine in Missouri, US, has found two enzymes encoded by the genome of Plasmodium falciparum, the most lethal of the malaria-causing species, are critical to the parasite’s entry and exit from red blood cells.

Read the full article in Cosmos magazine here